
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2002

Optimization of image processing algorithms via communication Optimization of image processing algorithms via communication

hiding in distributed processing systems hiding in distributed processing systems

Aaron M. Cordes
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation Recommended Citation
Cordes, Aaron M., "Optimization of image processing algorithms via communication hiding in distributed
processing systems" (2002). Retrospective Theses and Dissertations. 19819.
https://lib.dr.iastate.edu/rtd/19819

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F19819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/19819?utm_source=lib.dr.iastate.edu%2Frtd%2F19819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Optimization of image processing algorithms via
communication hiding in distributed processing systems

by

Aaron M. Cordes

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Arun Somani, Major Professor

Manimaran Govindrasu
David Fernandez-Baca

Iowa State University

Ames, Iowa

2002

Copyright © Aaron M. Cordes, 2002. All rights reserved.

www.manaraa.com

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

Aaron M. Cordes

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

www.manaraa.com

111

Table of Contents

List of Figures iv

List of Tables v

Abstract vi

1. Introduction 1

2. Problem Overview 2
2.1. Previous work in image processing and object extraction 2
2.2. ALOA system details 3
2.4. Runway detection and Hough transform overview 6
2.5. Hough transform performance optimizations 11

2.5.1. Conversion to Duda/Hart algorithm 11
2.5.2. Conversion to integer arithmetic via arithmetic code 13
2.5.3. Optimizing the arithmetic code 14
2.5.4. Varying values for

8 q uanta
15

2.5.5. Conclusions 17

3. Parallel Computation and Algorithm Pipelining in ALGA 19
3.1. Previous Work in Algorithm Pipelining 20
3.2. Pipelining the ALGA system 22

3.2.1. Results of pipelining in NIU system 23
3.2.2. Results of pipelining in xCat cluster 24
3.2.3. Conclusions 26

4. Communication Hiding in ALGA 27
4.1. Previous work in communication hiding 27
4.2. Communication hiding in ALGA and its relevance in high-speed networks 29

4.2.1. Results of communication hiding in NIU system 32
4.2.2. Results of communication hiding in xCat cluster 33
4.2.3. Conclusions 35

5. Summary 36

References 3 8

Acknowledgements 41

www.manaraa.com

1V

List of Figures

Figure 1. Sample radar image from a landing airplane. 4
Figure 2. Data flow diagram for ALGA system 5
Figure 3. Original sample image of airplane landing. 7
Figure 4. Sample image after noise reduction (left) and edge detection (right) 7
Figure 5. Representation of a straight line in polar coordinate space. 8
Figure 6. Duda and Hart version of Hough transform algorithm 9
Figure 7. Graphical representation of Hough transform. 9
Figure 8. Output from ALGA system with edges of runway detected. 10
Figure 9. Original slope/intercept form of Hough transform. 12

Figure 10. Resulting images for various values of BgUanta 16

Figure 11. Theoretical algorithm pipelined system 20

Figure 12. Speedup due to two stages of pipelining in the NIU system. 24

Figure 13. Speedups in xCat cluster as pipeline stages increase 25

Figure 14. Efficiency of hardware usage in xCat cluster as pipeline stages increase. 25

Figure 15. Theoretical distributed system with data source node providing data to all
processing nodes. 31

Figure 16. Speedup of two-stage NIU pipeline due to communication hiding 32

Figure 17. Speedup in NIU client/server system due to communication hiding 33

Figure 18. Speedup in pipelined system on xCat cluster due to communication hiding. 34

Figure 19. Speedup in distributed system on xCat cluster due to communication hiding. 34

www.manaraa.com

V

List of Tables

Table 1. Original runtimes of Hough transform 11
Table 2. Comparison of runtimes of two versions of Hough transform. 13
Table 3. Speedup due to integer-based Hough transform. 14
Table 4. Speedup due to replacing division with binary shift. 15
Table 5. Runtimes and speedups for various values of BgUanta. 17

www.manaraa.com

V1

Abstract

Real-time image processing is an important topic studied in the realm of computer systems.

The task of real-time image processing is found in a wide range of applications, from multimedia

systems to automobiles to military systems. Typically these systems require high throughput and low

latency to perform at their required specifications. Therefore, hardware, software, and

communications optimizations in these systems are very important factors in meeting these

specifications.

This thesis analyzes the implementation and optimization of a real-world image processing

system destined for an aircraft environment. It discusses the steps of optimizing the software in the

system, and then looks at how the system can be distributed over multiple processing nodes via

functional pipelining. Next, the thesis discusses the optimization of interprocessor communication

via communication hiding. Finally, it analyzes whether communication hiding is even necessary

given today's high-speed networking and communication interfaces.

www.manaraa.com

1

1. Introduction

Real-time image processing is an important problem being studied today. The problem has a

wide range of applications, from multimedia, to military, to automotive realms. Real-time image

processing usually consists of three steps. First, the original image is received. Second, the image is

analyzed, and possibly modified or enhanced. Third, the resulting enhanced image is output for a

user to visualize. The requirements of these systems generally entail a relatively high output rate and

low latency. Therefore, the problem of optimizing the hardware, software, and communications of

these systems to maximize output rate and minimize latency is very important.

This thesis discusses the implementation and optimization of a real-world image processing

system. The system is to be installed in an aircraft. The system's function is the analysis and

modification of radar images so that the aircraft can land in low visibility. However, many of the

topics in this thesis are applicable to general image processing and distributed systems.

There are three main parts to this thesis. The first part discusses optimization in software of

image processing algorithms used in a radar analysis system. These optimizations will be analyzed

for their effectiveness. The second part of the thesis discusses steps taken to reduce the runtime of the

algorithms through parallel processing. In this case, the algorithms are parallelized with functional

pipelining, which pipelines the algorithms over multiple processing nodes. The third part of the thesis

looks at lowering the runtimes of the algorithms through hiding any necessary communication in the

background. Also, the question of whether communication hiding is necessary given the current

batch of high-speed networking hardware is discussed.

www.manaraa.com

2

2. Problem Overview

The focus of the thesis is on the implementation and optimization of the Autonomous

Landing and Obstacle Avoidance system (ALOA). ALGA is a system designed in conjunction with

Lockheed Martin that is to be used on aircraft. The main goal of the system is to enable a pilot to

land aircraft on a runway, even in the case of low visibility due to fog, rain, snow, or other weather-

related problems. The ALGA system achieves this goal through analysis of radar images gathered

from the aircraft's high-frequency active radar system.

2.1. Previous work in image processing and object extraction

Analysis of radar images using image processing algorithms is a common problem. A

somewhat similar system to ALGA was introduced in [1], but is designed for automobiles instead of

aircraft. The paper describes an algorithm for an all-weather driving assistance system. The system

employs ahigh-frequency active radar system — as does the ALOA system — to create a snapshot of

the surroundings of the automobile. The system then tries to detect the edges of the road and any

possible obstacles. This is done using a parabolic template, which approximates the road curvature as

a parabolic curve, then parameterizes this curve in polar coordinate space. The curves are analyzed

and a likelihood function picks the best candidate for the edge of the road. Once the edge is found,

obstacles are detected by the radar signature reflected back to the radar system.

A low-altitude aircraft-mounted system is discussed in [2] that is used to detect landmines

using Forward Looking Infrared (FLIR) images. The system was implemented on a network of

processing nodes, with the landmine detection algorithm pipelined over those nodes. The algorithm

consists of five steps:

1. Image correction.

2. Target cuing, which picks possible landmine candidates out of an image.

3. Target shape analysis, which decides if the shapes are landmines.

www.manaraa.com

3

4. Target spatial analysis, which decides where the shapes physically are.

5. Knowledge integration, which combines all results from the previous steps to decide if a

minefield is indeed in the image.

It was stated that the probability of detection of individual landmines in a synthetic image

was approximately 90%, with a probability of false alarm of 2%. For real FLIR images, the results

were approximately 64.6% detection probability and 25.6% false alarm probability.

Synthetic aperture radar (SAR) is a common method used to form ground images taken from

high altitudes (either from an airplane or a satellite). These images can then be analyzed to extract

and enhance interesting features.

In [3], SAR images are used to analyze land use by humans. A Bayesian network analyzes

SAR images in order to classify portions of the image into the specific categories of forest,

agricultural, vegetation, and build-up. This system can be used in the realm of community and

regional planning to help a community plan for future growth.

In [4], SAR satellite images are used to extract linear features, such as roads and paths, from

a high altitude image. By making certain assumptions about roads in a SAR image, such as they are

thin, elongated structures and are dark with respect to their surroundings, roads are extracted by using

morphological filtering. The authors showed that the method works for cases in which road widths

vary widely, and highly textured complex images. However, this method could not be used in a

system with high frame-rate needs because the processing of each frame of data lasts on the order of

minutes. The system is designed to map remote areas of previously uncharted terrain.

2.2. ALOA system details

As stated previously, the ALGA system is designed for detecting the edges of a runway and

any obstacle in the runway as an airplane is landing.

www.manaraa.com

4

To perform this duty, the system consists of a radar transmitter and receiver, an A/D

converter to convert the radar data to digital form, computational hardware to analyze the data, and an

output display to show the results to the pilot. The radar transmitter/receiver is mounted in the

airplane and sends out high-frequency radar signals (with frequencies in the tens of GHz). At these

high frequencies the radar is only effective over relatively short ranges, usually only a mile or two.

However, the radar signal that is returned begins to take shape, and individual objects can be seen in

the image. An example radar image can be seen in Figure 1, which shows a runway (with the center

being the black stripe) with a grove of trees in front of it. Objects that absorb the radar signal, such as

the trees, appear dark in the formed image. Meanwhile, objects that reflect the radar signal, such as

the snow on the runway, appear as bright spots.

Figure 1. Sample radar image from a landing airplane.

Once the radar signal is received, it is passed to an A/D converter, and then the raw data is

converted from the time domain to the frequency domain using a Fast Fourier Transform (which can

www.manaraa.com

5

be implemented in either hardware or software). The data in the frequency domain can now be used

to construct an image of the radar signal, such as the image in Figure 1.

Once the image has been constructed, there are two main tasks to perform. The first is

runway extraction, which entails performing analysis on the image to predict where the edge of the

runway is most likely to be. The second task is obstacle avoidance. For obvious safety reasons, the

plane should not be landed if there are any obstacles in the runway. The obstacle avoidance system

attempts to detect any obstacles on the runway and output the obstacles to screen along with the

runway extraction data. Once the tasks are performed, the computed data can be overlaid on the

original image or on an enhanced version of the image. The flow diagram for the system can be seen

in Figure 2.

~.~<1~,
Tt~an~tr~fi~~i:€`

~~]~ cty

~~
~°~►ia~erter f'~T

~~
F~m~afi~n

O~~tacle
A~~+ c~anc~

~.€inwtty
I~etectc-~n ~~~:em~r

Figure 2. Data flow diagram for ALGA system.

The system is similar in goals to the automobile driving assistance system in [1], with a few

differences. The ALGA system must be concerned with the edges of the runway, but it handles the

situation differently. The assumption is made that the runway edges will be straight lines, not curves

www.manaraa.com

6

as in [H]. Since this simplifies the situation, much different algorithms can be used to analyze the

radar images.

The ALOA system is eventually intended to output areal-time video sequence that the pilot

can follow in low visibility. Consequently, there is a minimum quality of service of 10 frames per

second (fps) required for this system. This constraint is the leading motivation of studies performed

in this thesis, and two problems were analyzed in this study. First, the problem of optimizing the

algorithms in the system in order to meet the output constraints was analyzed. Second, the problem

of distributing the algorithms over multiple processing nodes was analyzed.

2.4. Runway detection and Hough transform overview

Runway detection was focused on for this study because it was, at first, the most time

consuming algorithm in the system. In the system evaluated, runway detection was performed by

using the Hough transform algorithm. The Hough transform, first proposed in [5], can be used to

detect shapes (for example, a circle or an ellipse) in an image, even if the image contains relatively

large amounts of noise. In its simplest form, the Hough transform can be used to detect straight lines,

which is useful in our case for detecting the edges of a runway as a plane is landing. Theoretically,

the Hough transform can be used to represent any type of shape, but the required computation time

greatly increases as the complexity of the shape increases. For example, a line can be represented by

two parameters, slope and intercept. A circle would require three (x offset, y offset, radius), and an

ellipse would require four (x offset, y offset, x radius, y radius). Each incremental increase in the

number of parameters for the shape adds an additional dimension to both memory requirements and

computational requirements, so anything but relatively simple shapes will overwhelm the processing

and storage capabilities of today's computers.

www.manaraa.com

7

Generally, preprocessing is required on the original image in order for the Hough transform

to perform optimally [6]. Therefore, noise reduction and edge detection is performed before the

Hough transform in order to simplify the work done by the Hough transform. In this system a

Gaussian blur was used to reduce noise, and then a Sobel edge detection operator was used to

simplify the scene. The resulting image is then fed to the Hough transform. A sample image and the

results of each operator can be seen in Figure 3 and Figure 4.

Figure 3. Original sample image of airplane landing.

Figure 4. Sample image after noise reduction (left) and edge detection (right).

www.manaraa.com

8

The Hough transform in general has two separate steps. First, the image is analyzed and

votes are taken as to which are the most distinct straight lines in the image. Second, the votes are

tallied and the most distinct lines are selected and overlaid on the original image. Duda and Hart [7]

modified Hough's original algorithm (which uses slope/intercept form for line representation) in order

to simplify computations. In the Duda/Hart algorithm, the lines are parameterized by the polar

representation such that a line is represented by a radius and angle (p, 8) coordinate in the polar

coordinate plane. This means that a line (p, 8) is drawn by finding the segment extending p units

from the origin, at an angle of 8. The actual line being represented is then drawn perpendicular to this

segment, as shown in Figure 5.

Figure 5. Representation of a straight line in polar coordinate space.

Therefore, the idea behind the Duda and Hart version of the Hough transform is that a given

point (x, y) in an image can be a part of a discrete number of straight lines in an image, as long as 8

also has a discrete set of values. For each value of 8 the equation

p = x cos(o) + y sin(6) [Eq. 1]

is computed to find the (p, o) parameter for each of the possible lines. For each of these possible (p,

8) parameters computed, a bucket that corresponds to the [p, 8] coordinate is incremented. Each

www.manaraa.com

9

bucket represents "votes" for the most distinct lines in the image. The overall Duda and Hart

algorithm is shown in Figure 6.

for each pixel [x;, y;] in the original image {
if pixel [x;, y~] is high (binary 1) {

for (8= 0; e < emax, a += equanta) {
p = x; cos(9) + y~ sin(A)
increment bucket corresponding with [p, 8]

}
}

}

Figure 6. Duda and Hart version of Hough transform algorithm.

Throughout the algorithm, the center of the original image is considered the planar origin so

that all possible lines can be parameterized and drawn on the resulting image. When this algorithm is

completed, the most distinct line in the image corresponds to the [p, 8] bucket with the largest value.

These distinct lines appear as peaks or bright spots in a graphical representation of the Hough

transform, as can be seen in Figure 7. As many line parameters can be picked out of the array of

buckets as are deemed necessary to overlay on the original image.

Figure 7. Graphical representation of Hough transform.

www.manaraa.com

10

The given problem statement for the ALGA system specified that the runways the system

would be used on would be equipped with corner reflectors on the edges of the runway which reflect

a very large amount of the radar signal back to the source. These reflectors would appear as bright

spots on the radar image. Given that the line of these corner reflectors would appear as a very bright

line in the radar image (compared to the rest of the scene), we are working under the assumption

given in the problem statement that the two most distinct lines found by the Hough transform would

conform to the edges of the runway. This assumption greatly simplifies the picking of the correct

peak points in the Hough transform. At this point, the highest peak in the Hough transform with a

positive slope, and the highest peak with the negative slope are considered to be the edges of the

runway. Future work will entail making the peak extraction more robust.

Once the parameters for the most distinct lines are found, the lines can easily be drawn on the

image. Figure 8 shows the results of the Hough transform after lines have been drawn on the image.

The figure shows that the system detected the edges of the runway as the most distinct lines in the

image, as was intended.

Figure 8. Output from ALOA system with edges of runway detected.

www.manaraa.com

11

2.5. Hough transform performance optimizations

In this section, we discuss methods of speeding up the original Hough transform algorithm.

The original Hough transform algorithm was too slow for the requirements of the system, which was

specified as 10 fps. Just the above algorithm by itself would cause the system to be unable to meet

the 10 fps requirement. Table 1 shows the time required for the original algorithm. All timings in

this section were taken on a 1.5 GHz Pentium 4 computer with 512 MB of RAM.

Table 1.Original runtimes of Hough transform.

Image Size Hough transform runtime

60x512 165.71 ms

120x512 360.97 ms

240x512 747.20 ms

480x512 1567.43 ms

2.5.1. Conversion to Duda/Hart algorithm

The original algorithm used in the ALGA system followed Hough's original algorithm and

did no conversions to the polar coordinate space. Instead it used the simple slope/intercept form to

describe a straight line. For each high pixel in an image, all the possible straight lines the pixel lies

on is calculated. A bucket is incremented for each of these lines. The original algorithm is shown in

Figure 9.

www.manaraa.com

12

for each pixel [x;, y~] in the original image {
if pixel [x;, y~] is high (binary 1) {

for (k= 0; k < rows; k++) {
slope = (y~ — k) / x;
8 = tan-1(slope)
increment bucket corresponding with [k, 8]

}
}

}

Figure 9. Original slope/intercept form of Hough transform.

The original algorithm must convert all slopes to angles, otherwise the storage array would

not be bounded as slopes increase to infinity in the case of vertical or close-to-vertical lines. The

inverse tangent can be calculated fairly quickly using table lookups, but the reverse operation must

again be calculated later on when searching the storage array for peak points, which adds to the

runtime. Also, because k depends on the number of rows in the image, the work required grows

much more quickly than the Duda/Hart algorithm as an image becomes larger. With the Duda/Hart

algorithm, the internal loop is bounded by 8 = 180° no matter what the image size, so the workload

will not grow as quickly as the number of rows in an image increases.

As was mentioned, the slope/intercept representation of a line causes problems when the

drawn line is either vertical or close to vertical. In this case, both the slope and intercept of the line

approach infinity and become hard to handle in the system. These become special cases that increase

computation time and make the system more complicated. Therefore, the decision was made to move

to the Duda/Hart algorithm. At first glance, the Duda/Hart algorithm may not seem like much of an

advantage, but a closer look shows why the algorithm is faster in the long run.

www.manaraa.com

13

The formula p = xi cos(9) + y~ sin(o) consists of two trigonometric calculations, plus two

floating point multiplications and a floating point addition. With no change, this is an expensive

operation, but many techniques can be performed which make this operation relatively fast. The first

method is to change the cosine and sine calculations to a table lookup. The table of cosine and sine

values are precalculated and stored in the program. Then the calculations are a simple array

reference, depending on the value of 8. If 8 is an integer value, no conversions need to be done to

reference the array, and the operation takes only as long as a memory reference in the computer

system. If we assume that these values are stored in cache after the first reference (a reasonable

assumption due to spatial locality), the memory reference is very fast. Table 2 shows that the

speedup gained by moving to the Duda/Hart algorithm and implementing table lookup is very

significant. The minimum speedup found is 4.51, while the maximum is 4.96.

Table 2. Comparison of runtimes of two versions of Hough transform.

Image Size
(pixels)

Hough transform
runtime (original

Algorithm)

Hough transform
runtime (Duda/Hart

algorithm

Speedup
(times
faster)

60x512 165.71 ms 36.69 ms 4.51

120x512 360.97 ms 76.23 ms 4.73

240x512 747.20 ms 154.82 ms 4.82

480x512 1567.43 ms 316.25 ms 4.96

2.5.2. Conversion to integer arithmetic via arithmetic code

At this point, the main calculation of the Hough transform has been reduced to two floating

point multiplications and a floating point addition. However, these calculations can all be done with

integer arithmetic instead of floating point through use of an arithmetic code. As analyzed in [8],

Equation 1 can be changed top = [x; cosS~aled(6)+ y~ sins~alea(8)] / A, where coss~alea(e) _

floor[A*cos(8)], sins~~ea(8) = floor[A*sin(6)], and A is an integer. This converts all of the arithmetic

to integer, greatly speeding up the calculation. The authors of [8] showed that the speedup gained on

www.manaraa.com

14

various systems with A = 1000 ranged from 2.00 to 3.53, depending on the size of the image tested.

In this study, moving from floating point to integer arithmetic did not result in as large of a speedup,

as can be seen in Table 3, but the results are still significant. One reason for the difference may be

that the floating point hardware used in this study is more efficient than the floating point hardware

used in [8], which would reduce the advantage of using the integer-based Hough transform. As in the

study in [8], the speedup tends to increase as the image size increases.

Table 3. Speedup due to integer-based Hough transform.

Image Size
(pixels)

Speedup by moving from
floating point to integer
arithmetic (A = 1000)

60x512 1.56

120x512 1.76

240x512 1.81

480x512 1.82

2.5.3. Optimizing the arithmetic code

A simple extension of this idea that was not tested in [8] is setting A to a power of 2. In this

case, we can replace the integer division by A with a binary shift to the right of log2(A) places, which

is a much simpler and faster operation in microprocessors. It was found that this simple procedure

resulted in a larger speedup than using A = 1000. It is easy to see why we get such a speedup.

Originally, the algorithm had two trigonometric calculations, two floating point multiplications, and

one floating point addition in each step. Now it only has two integer multiplications, an integer

addition, and a binary shift. Table 4 shows the speedup gained by setting A to a power of 2 (in this

case, 1024) instead of 1000.

www.manaraa.com

15

Table 4. Speedup due to replacing division with binary shift.

Image Size
(pixels)

Additional speedup gained
by setting A to a power of

2 instead of A = 1000

60x512 1.48

120x512 1.41

240x512 1.45

480x512 1.41

2.5.4. Varying values for equanta

A final way that the Hough transform can be sped up is by increasing the quanta value for 8.

It is expected that an increase of 8yuanca will result in very close to a linear speedup in computation

time for the Hough transform. In general, 8 is stepped by the quanta value from 0 to 180°, and the

original value used for 9gUan~ was 1 °. 8 can be stopped at 180° because cos(6) _ -cos(6 + 180°) and

sin(8) _ -sin(8 + 180°). Therefore, going past 180° results in redundant calculations. However, the

optimal value of the 6gU~ta is not as easy to determine. If the quanta value is too large, then the

accuracy of the final result is lowered. If the quanta value is too small, then the results in the buckets

show a "smoothing" effect, because different values that increment a single bucket for larger values

of 6quan~ now increment many different buckets [6][9]. In this case, there may not be a distinct peak

represented in the resulting buckets, and there is a possibility that aless-distinct line will actually be

seen as the maximum. Since the goodness of the resulting transform is a largely subjective matter,

various values for 6qU~~ were evaluated for a sample image, and the results are shown in Figure 10.

www.manaraa.com

16

°
equanta = 1

equanta = 5 °

°
equanta = 3

0
equanta = 7

Figure 10. Resulting images for various values of 0q„a~ta.

Figure 10 shows that the accuracy of the drawn lines is maintained for equanta equal to 1 °, 3°,

and 5°. Close examination shows that there are slight differences in the results, but all three values

found the outside edges of the runway to be the most distinct lines. However, when equanta is

increased to 7°, a less prominent line is found to be the right edge of the runway.

Timings were taken on the sample image to determine the speedup given by increasing the

value of equanta. equanta was tested for values of 1 °, 3°, and 5°. The results of the time tests can be seen

in Table 5. These timings were taken with the integer Hough transform using the binary shift.

www.manaraa.com

17

Table 5. Runtimes and speedups for various values of equanta.

Image Size
(pixels)

Runtime
(equanta = 1 °)

Runtime
(equanta = 3°)

Runtime
(equanta = 5°)

Speedup 1 °
to 3°

Speedup 1 °
to 5°

60x512 18.53 ms 4.89 ms 3.21 ms 3.79 5.77

120x512 38.74 ms 9.48 ms 5.82 ms 4.09 6.66

240x512 81.40 ms 18.07 ms 11.28 ms 4.50 7.21

480x512 159.22 ms 36.80 ms 21.84 ms 4.32 7.29

An interesting result of these timings is that increasing 8quanta by N results in a speedup larger

than N. The reason is that caching is more efficient as N increases because there is a smaller set of

accesses into the sine and cosine lookup tables and the array of buckets.

Z.5.5. Conclusions

The results in the previous section showed that the various algorithms for runway detection

were sped up enough so that the system will be able to achieve the required 10 fps output necessary.

It was shown that using the Duda/Hart algorithm instead of the original Hough algorithm results in

gains in speed and programming simplicity. Speedups from the Duda/Hart algorithm ranged from

4.51 to 4.96. Converting the algorithm to only integer arithmetic via an arithmetic code resulted in

speedups from 1.56 to 1.82. Optimizing the arithmetic code by using a binary shift operator instead

of division resulted in additional speedups from 1.41 to 1.48. Finally, scaling the value of 6quanta by N

showed additional speedups larger than N, due to more efficient caching.

However, there are still other steps that must be performed which will reduce the output rate

of our images. Although not yet implemented, the obstacle avoidance part of the system will

probably be computationally complex and push our output under the necessary limit of 10 fps. Also,

the runtimes for the Hough transform listed above are for the average case. The worst-case runtime

of the Hough transform used for line detection is much slower than the average case used for the

timings in the previous section. Timings taken showed that the worst-case runtime for the Hough

www.manaraa.com

18

transform on a 60x512 image is 76.05 ms. This leaves only 23.95 ms for the rest of the algorithms to

be performed, which is too little time considering that image preprocessing and obstacle detection

must still be performed. Ultimately, the ALFA system will have to make real-time performance

guarantees, meaning the worst-case runtimes must be considered. Because of this, other methods for

speeding up computations must be considered, with the most obvious one being parallel processing.

www.manaraa.com

19

3. Parallel Computation and Algorithm Pipelining in ALOA

There are two basic methods of parallel computation. A computation can be described as

data-parallel or function-parallel [10]. A computation that is function-parallel breaks a program down

into multiple functional units that can be executed simultaneously. Adata-parallel computation

breaks up data and divides it as equally as possible among multiple processing nodes. Generally in a

data-parallel computation the processing nodes perform the same task, but on different sets of data.

When all the processors have completed their task, the data is merged again.

According to [11], it is possible to combine these two parallel computation methods to form

four separate styles of parallel computation.

1. Concurrent Function-Parallel Computation —Processors perform different tasks at the

same time. It is stated that this is the most common method used in parallel and distributed

systems.

2. Concurrent Data-Parallel Computation —Processors perform the same task, but on

different sets of data. At the lowest level, a processor with vectoring capabilities performs

concurrent data-parallel computations.

3. Pipelined Function-Parallel Computation —Processors are organized in stages, and each

stage performs a different task. Data that flows through the pipeline is modified at each

stage, then sent to the next stage.

4. Pipelined Data-Parallel Computation —Processors are again organized in stages, but each

stage performs the same task. Data is broken up into smaller pieces and flows through each

stage of the pipeline. Communication about the data set at each stage of the pipeline may

have to be exchanged between stages.

In the ALGA study, it was observed that the ALOA system is completely linear, with

multiple well-defined steps. As a result, it was decided that the type of parallelism to be implemented

www.manaraa.com

20

in ALGA is pipelined function-parallel computation. Using this model, a group of processing nodes

was set up as a pipeline, with each stage of the pipeline being assigned a specific set of tasks

applicable to the ALOA system. Each node waits for a set of data (a radar frame, in the case of

ALOA), performs its assigned tasks, and passes the resulting data to the next stage in the pipeline.

The goal of this system is to increase the throughput without greatly increasing the complexity of the

system. Figure 11 depicts an example pipelined system.

~Pi~~lit~e
: tag '~t~g~ 1

~~~ 

pi~iel 
Stagy ~ 

Figure 11. Theoretical algorithm pipelined system. 

~orit 
het 

3.1. Previous Work in Algorithm Pipelining 

A study was done in [ 12] with the goal of making parallel computations of a Scene Adaptive 

Transform Coding algorithm more efficient. It was stated that the algorithm had been parallelized on 

a cluster of eight computers and found significant speedups. However, as the number of processing 

nodes in the cluster increased, the communication overhead began to overwhelm the increase in 

processing power. To alleviate this problem, the authors implemented functional concurrency in the 

form of a Pipeline-Tree Architecture (PTA). The goal of the PTA is not to reduce the computation 

time of the coding algorithm (although it would be desirable), but to lower communication overhead 

so that the system will be more efficient as the number of processing nodes scales. 

To utilize the pipeline efficiently, the input data was partitioned into equal-sized non-

overlapping blocks. Each of these blocks is processed independently at each processing node. The 



www.manaraa.com

21 

authors -note that the independent processing limits the amount of synchronization and 

communication between processors. The PTA used in this system had 15 processing nodes, with six 

parallel pipelines each working on a block of data. Equations were developed which describe the 

situations where the PTA had less communication overhead than the original Tree Architecture (TA). 

In the actual implementation, it was found that only a 2.2% increase in throughput was gained by 

moving from the TA to the PTA, but it was noted that is due to the fact that two of the algorithms in 

the pipeline had a much larger execution time than the rest of the stages in the pipeline, which limited 

any increases in throughput. The authors did find greater scalability, which was the original intent. 

The authors of [ 13] discuss the importance of scheduling in a distributed pipelined system. 

They note that many real-time applications that can utilize a pipelined system are implemented on 

heterogeneous systems with complex timings. This, combined with the strict timing requirements of 

real-time systems, causes scheduling to be a task of high importance. The authors of [ 13] assume that 

there can be multiple application streams that can be pipelined in the system. As a result, the authors 

developed partitioning rules designed to eliminate unnecessary buffering and latency in the system, 

ensure the correct function of the pipelining strategy, and allow the problem to be decomposed to take 

advantage of multiple processing nodes. Using these rules, the authors finally developed equations 

that analyzed the end-to-end latency and schedulability of the system. 

The landmine detection system discussed previously [2] was implemented as a pipeline over 

multiple processing nodes. It was stated that the low-level algorithms in the system were 

implemented on a network of processing nodes, where each processing node is an array of i860 vector 

processors. The communication links between the pipeline stages consisted of a serial point-to-point 

link for simplicity. It was found that using this rudimentary hardware (by today's standards), the 

system was still able to perform well and output results in real-time. 



www.manaraa.com

22 

3.2. Pipelining the ALOA system 

Pipelined function-parallel computation sets up very well for the ALGA system. First, all the 

algorithms in ALGA are sequential, so the system is inherently linear. This makes it very easy to 

break up the given tasks over multiple processors. Second, the computation times for each frame of 

data are relatively small and the system requires high throughput. Parallel programming interfaces 

such as MPI [ 14] are not geared towards small individual tasks, because the overhead of 

communication required t0 parallelize an algorithm is large relative t0 the problem size [15]. The 

only communication required in a pipelined version of ALOA is the passing of frames between 

processing nodes, meaning simpler communication, such as in a pipeline, is adequate. Third, 

programming algorithms to run on the pipeline is very simple. Once the pipeline is implemented, 

individual tasks can be plugged into or removed from any processing node without any additional 

work. On the other hand, data level parallelism requires the modification of each individual 

algorithm to take advantage of the parallel libraries. 

There are a couple of caveats to the pipelined system. First, maximum performance requires 

that the runtimes of the tasks on each node are as close to equal as possible. The throughput of the 

system is limited by the slowest set of tasks at a node. Therefore, analysis of each algorithm and its 

runtimes is very important before assigning tasks to a processing node. Second, increasing the 

number of stages in the pipeline can increase the throughput, but can also increase the latency of 

results. The ALGA system requires both high throughput and low latency so that frames being output 

to the pilot are still relevant to the scene outside the airplane. 

To study the advantages gained by moving from a single processor to a pipelined system, the 

study utilized a piece of hardware from Lockheed Martin Corporation called the Network Interface 

Unit (NIU). The NIU is essentially ahigher-level messaging protocol wrapped around afibre-

channel interface, which provides 1 Gb/s transfer speeds. The first test system consisted of two hosts, 

each containing a 1.5 GHz Pentium 4 processor and 512 MB of RAM, and equipped with a NIU 



www.manaraa.com

23 

interface card. The second test system was a 32 node xCat cluster [ 16], with each node containing 

two 1133 MHz Pentium III processors connected by a high-speed Myrinet network. 

The main interest of the study was to see how much of a gain in speed (if any) is given by 

distributing the ALOA algorithms over multiple processing nodes and implementing the algorithmic 

pipeline discussed above. Two cases were tested in order to observe the negative affect on 

throughput due to differing workloads on each processing node. The first case consisted of 

distributing slightly different workloads across the pipeline stages. To do this, the algorithms used in 

the previous section to perform runway detection were analyzed and split up close to evenly over the 

two processing nodes in the NILJ system, but the workloads still differed by 10-15%. The first 

processing node was assigned the tasks of receiving the original image, performing the Gaussian 

noise reduction and Sobel edge detection, then passing this data to the second node which performed 

the Hough transform and line drawing. The second case consisted of distributing perfectly equal 

workloads across the processing nodes. 

In both cases the nodes were synchronized by the second stage sending a computation 

complete message to the first stage when the image had been output. At this time, the first stage was 

allowed to send its preliminary results to the second stage. To perform this function on the NIU 

system, an NIU programming library was interfaced to set up the transmission of messages. The 

pipeline was limited to two stages in the NILJ because only two processing nodes were available. 

3.2.1. Results of pipelining in NI U system 

The NILJ system saw a significant speedup due to pipelining over two stages, and the results 

can be seen in Figure 12. As was expected, the case with even workloads had better throughput than 

the case with slightly differing workloads. The speedup for the differing workloads varied between 

approximately 1.5 and 1.6, while the speedup for identical workloads varied between approximately 

1.6 and 1.8. In both cases, the lowest speedup occurred when the smallest image was used. This is 



www.manaraa.com

24 

expected because communication setup times will be larger relative to computation times for smaller 

images. 

Speedup from pipelining in NIU system 

2-

1.9 
1.8 

~ 1.7 

~ 1.6 

N 1.5 -

1.4 

1.3 

1.2 

60x512 120x512 240x512 480x512 

Image Size 

--•— Speedup -same 
workload 

__..~.._._ Speedup -different 
workload 

Figure 12. Speedup due to two stages of pipelining in the NIU system. 

3.2.2. Results of pipelining in xCat cluster 

The xCat cluster utilizes the MPI programming interface for its inter-processor 

communication. The large number of processing nodes in the cluster allowed us to extend the 

pipeline to more stages and observe whether significant speedups were realized for these longer 

pipelines. The pipeline was tested for two to eight stages. The workload was devised so that all 

stages did exactly the same amount of work in order to observe the maximum speedup available. 

Image sizes ranging from 60x512 pixels to 480x512 pixels were transferred between stages to 

observe whether larger communication requirements affected the results from the system. The 

speedups observed are shown in Figure 13. It shows that significant speedups are seen as the number 

of stages increases. Larger communication requirements do not seem to affect the speedup 

significantly. 



www.manaraa.com

25 

Speedup from increasing number of pipeline stages 

60x512 120x512 240x512 

Image size 

480x512 

--~— 2 stages 
—IE-- 3 stages 

4 stages 
.~.~~mm.-• 5 stages 
~I~ 6 stages 
—~— 7 stages 
--F— 8 stages 

Figure 13. Speedups in xCat cluster as pipeline stages increase. 

Another useful measure is the efficiency of the pipeline. It is important to know how well the 

processing nodes are being utilized in the pipelined system. For example, if the system has low 

efficiency, it may not be worthwhile to pipeline the system, because much of the processing ability is 

being wasted. Figure 14 shows the efficiency of the various pipeline lengths. Efficiency is defined as 

the actual speedup realized in the system divided by the maximum theoretical speedup. 

Efficiency of pipeline in xCat cluster 

~ 2 stages 
-W-~-- 3 stages 

4 stages 
 5 stages 
—~1E— 6 stages 
—~— 7 stages 
--+— 8 stages 

60x512 120x512 240x512 480x512 

Image size 

Figure 14. Efficiency of hardware usage in xCat cluster as pipeline stages increase. 



www.manaraa.com

26 

Figure 14 shows that the efficiency of the pipelines generally hovers between 0.80 and 0.85 

for all pipeline lengths, except for a length of two. The efficiency of the two-stage pipeline is higher, 

due to the simplified communication requirements in the two-stage system. In the two-stage system, 

the first stage only sends its finished work to the last stage, and the last stage only receives the -frame 

from the first stage. For pipeline lengths greater than two, there are intermediate nodes that must both 

send and receive data at each step, which complicates communication. In reality, efficiency would 

probably not be as high in a real system, because it is highly unlikely that workloads would be 

divided perfectly equal between the processing nodes. However, the figure shows that efficiency 

remains relatively high as the number of pipeline stages increases, meaning the system should scale 

well as long as workloads are fairly well matched. 

3.2.3. Conclusions 

It has been shown that pipelining of algorithms over multiple processing nodes can be a very 

efficient way of gaining speedups in computation. The results from both the NIU system and the 

xCat cluster show that even a short pipeline can significantly increase the throughput of algorithms 

that are inherently linear. The xCat cluster also showed that this paradigm performs well, even as the 

number of pipeline stages increases, maintaining an efficiency above 80% even as the number of 

pipeline stages increased to eight. 



www.manaraa.com

27 

4. Communication Hiding in ALOA 

The previous section showed that large speedups may be gained by pipelining the ALOA 

system. However, there are situations where communication costs may negate any reduction in 

processing time, such as in the case when the tasks at each node take a very short amount of time 

relative to communication times. Ideally, the communication should be reduced as much as possible. 

However, the communication requirements are basically constant for a given frame size in the 

pipelined system. Since the communication time cannot be reduced, another method is to "hide" the 

communication behind the computation. 

Communication hiding is a common way to optimize distributed programs. Communication 

can be a very expensive operation, because accessing data on a remote machine can take many times 

longer than accessing data in local memory. 

Communication hiding requires that the network or software interface be able to perform both 

sends and receives in the background. This means that the interface must allow for non-blocking 

sends on the transmit side, and sufficient buffering on the receive side such that the receiver may wait 

to process incoming data until it is ready. The authors of [ 17] show that if the total incoming and 

outgoing communication requirements take less time than the computational requirements of the 

given task, then the communication time can be completely hidden. Sends should be initiated as early 

as possible, and receives as late as possible in a communication cycle to maximize the 

communication hiding [ 18] . 

4.1. Previous work in communication hiding 

Much previous work has been done in both the hardware and the software realms of 

communication hiding. The authors of [ 19] developed a parallelizing compiler that attempted to 

automate communication hiding. The authors note that there is no linguistic support for automatically 

doing communication hiding in data parallel languages. Also, there is no formal asynchronous data 



www.manaraa.com

28 

transfer capability in the compilers for these languages. Consequently, a compiler was developed to 

automate this process using a structure called an N-level message queue. The message queue is an 

intermediary between the high-level application and hardware that handles sending and receiving 

messages in the background. The N-level queue also implements message priority, which could 

possibly be utilized in real-time applications. Utilizing overlapped communication, the authors found 

a speedup from 0.2% to 11.9%, depending on the application and the number of processors in the 

distributed system. 

In [ 17], communication hiding was implemented on a distributed system called Proteus. 

Proteus is implemented as a group of clusters, where each cluster is connected to another cluster 

through a crossbar network for inter-cluster communication, and a VMEbus for control signals. 

Inside each cluster are multiple processing elements that utilize shared memory for communication. 

Each cluster also contains a cluster controller that manages the resources in the cluster. The authors 

state that this system of groups of clusters allow for greater scalability than a general distributed 

system. 

Proteus is able to overlap communication and computation because the cluster controller 

handles communication functions instead of individual processing elements. The processing element 

is allowed to post a communication request with the cluster controller and continue its work while the 

controller does the work of setting up the actual communication. 

To test the performance gains due to background communication on Proteus, a parallelized 

FFT algorithm was implemented with the focus on optimizing the communication between 

processing elements. The authors found that the communication requirements for processing parts of 

the FFT algorithm approached zero, meaning the communication was almost completely hidden 

behind the computation. 

In [20], the ability of two specific distributed systems to overlap computation with 

communication was analyzed. The EM-X [21 ] multiprocessor system and the IBM-SP2 [22] 



www.manaraa.com

29 

distributed system were tested. The El~'IX has 80 processing nodes connected by an Omega network 

and is designed to lower communication costs in distributed systems with three methods: latency 

reduction, latency hiding, and latency minimization when accessing remote memory. First, latency is 

reduced by joining the communication pipeline with the execution pipeline. Second, latency is 

hidden by multi-threading tasks. Finally, latency is minimized during remote memory accesses by 

optimizing packet routing and throughput in the communication network. The SP-2 from IBM uses a 

distributed memory passing architecture and can have anywhere from 2 to 128 processing nodes. The 

design goal of the SP-2 was to be a general purpose processing cluster with the ability to scale well as 

processing nodes increase. 

To test the capability of the EM-X and SP2 systems to overlap communication and 

computation, a distributed bitonic sorting algorithm was implemented. The algorithm consists of two 

steps. The first step is a local sort and contains no interprocessor communication. The second step 

merges .the results from the individual processing nodes and does require communication between 

processors. It was found that both systems were able to reduce the communication overhead by 30% 

to 40% in the case that the message size was 1000 integers, resulting in significant speedups in the 

algorithm. 

4.2. Communication hiding in ALOA and its relevance in high-speed networks 

The NILT interface is very well suited for communication hiding. Both the transmit and 

receive queues contain circular buffers, which allow the sender and receiver to do work on one buffer 

of data while another buffer is being sent or received. Secondly, the NIU utilizes DMA such that no 

processing time is utilized when transferring the communicated data into the circular buffers. Finally, 

all the communications are non-blocking. Transmitting a message entails organizing a data structure 

to tell the hardware which data buffer to send, then initiating the send. After initiation, the host 

returns to the task it was working on, and the message is sent completely in the background. 



www.manaraa.com

30 

The MPI programming library used in the xCat cluster is also suited for background 

communication. Received messages are buffered until the processing node accesses them, and the 

library supports both non-blocking sends and receives. 

Communication hiding is a very important idea, especially when communication speeds are 

relatively slow compared to the computation time of a parallel task. However, communication speeds 

have increased dramatically recently with the advent of high-speed Ethernet, fibre-channel, and other 

transfer media. Therefore, an interesting question to ask is, "Given ahigh-speed communication link, 

is communication hiding even necessary?" It may be possible that communication hiding is difficult 

to implement on a given system, so the tradeoff between program complexity and reduced 

communication time may not be advantageous for high-speed networks. 

To look at the problem, two types of situations were analyzed. The first situation is the data 

pipelining algorithm introduced in the previous section. The second situation is hypothetical; it 

involves a master node that distributes frames of data to be computed by other processors. In the 

ALOA system, this master node may be considered the image formation node, which receives radar 

data and transforms it into a visual image. The master node supplies the processing nodes with the 

next set of data when completion of the current set of data has occurred. This round-robin technique 

of work assignments allows for temporal parallelism [23]. A diagram of this system can be seen in 

Figure 15. 



www.manaraa.com

31 

Figure 15. Theoretical distributed system with data source node providing data to all processing nodes. 

These situations were analyzed on two networks. The first was the fibre-channel based NIU 

system that was introduced in the previous section. This network has two processing nodes 

connected by a 1 Gb/s fibre-channel interface. The circular buffering and the non-blocking 

communication features of the NILJ were utilized to move the communication to the background. 

The second network utilized was an xCat cluster of workstations, also introduced in the 

previous section. The cluster consisted of 32 processing nodes, with each node have two processors. 

A Myrinet network connected the processing nodes. The features of the MPI programming interface 

were utilized to move the communication to the background. Specifically, the ability to perform non-

blocking sends and receives, and the automatic buffering of messages on the receive end allowed the 

attempt to hide communication behind computation. 



www.manaraa.com

32 

4.2.1. Results of communication hiding in NIU system 

To perform this test, the runway detection algorithms of the ALOA system were performed 

on each system for a variety of processor numbers and image sizes. The number of processors in the 

NILT system was limited to two because of limitations on buffering in the kernel space, which is 

necessary for the NN interface to buffer incoming and outgoing data. Communication hiding was 

tested for the two-stage pipeline system and the theoretical distributed system with a node passing out 

data to other processing nodes. The results for the pipelined system are shown in Figure 16, while the 

results for the distributed system are shown in Figure 17 

Speedup in two-stage NIU pipeline due to communication 
hiding 

1 

0.95 

0.9 
60x512 120x512 240x512 480x512 

Image Size 

~ Speedup -
Same 
workload 

Speedup -
different 
workload 

Figure 16. Speedup of two-stage NIU pipeline due to communication hiding. 



www.manaraa.com

33 

Speedup on from communication hiding on NIU 
client/server system 

1.06 

1.04 

~ 1.02 
a~ a~ Q. 

0.98 

0.96 
60x512 120x512 240x512 480x512 

Image size 

--~-1 Client 
--~-- 2 Clients 

Figure 17. Speedup in NIU clientlserver system due to communication hiding. 

The pipelined system showed speedups ranging from 1.01 to 1.1 1. The distributed system 

showed speedups around 1.02 for the single client case, and the dual processor case was limited to 

speedups of about 1.01. In the case of the dual processor distributed system, the source node may 

have trouble keeping up with requests from the rest of the consumer nodes, which limits the speedup 

possible as the number of consumer nodes increases. In all of these cases, speedups are seen, but the 

speedups are relatively small. The argument is that the communication times are so small now due to 

high-speed networking interfaces that the amount of speedup available is much lower than it used to 

be. 

4.2.2. Results of communication hiding in xCat cluster 

Timings were also taken in the xCat cluster for both the cases tested in the NIU system. 

Results from the pipelined system are shown in Figure 18. Results from the distributed system with a 

producer and multiple consumers are shown in Figure 19. 



www.manaraa.com

34 

Speedup in xCat cluster from communication hiding 
(pipelined system) 

1.07 

1.06 

1.03 
a cn 1.02 

1.01 

1 

0.99 
60x512 120x512 240x512 480x512 

Image Size 

~ 2 Stages 
--~- 4 Stages 

-6 Stages 

~~ 8 Stages 

Figure 18. Speedup in pipelined system on xCat cluster due to communication hiding. 

The pipelined system implemented on the xCat cluster showed very limited speedups due to 

communication hiding. Speedups ranged from 1.004 to under 1.052, meaning gains due to 

communication hiding were minimal. The smallest image benefited the most from communication 

hiding, although even these results showed limited gains. It can be concluded that any effort to speed 

up the pipelined system should be spent elsewhere. 

1.06 

1.04 

~ 1.02 
a~ a~ 
~ 1 N 

0.98 

0.96 

Speedup on xCat cluster from communication hiding 
(distributed system) 

60x512 120x512 240x512 480x512 

Image size 

—~--1 Client 
—°IMF-2 Clients 

4 Clients 
~~ ~-~i~~~ 8 Clients 

Figure 19. Speedup in distributed system on xCat cluster due to communication hiding. 



www.manaraa.com

35 

Like the pipelined system, the distributed system showed limited speedups across the board 

for all numbers of consumer nodes and image sizes. No speedup was seen larger than 1.02, meaning 

the advantage gained by attempting to hide the communication in the background was minimal. 

Again, given the high-speed interconnection network between processing nodes, the advantages 

gained by communication hiding may be limited. 

4.2.3. Conclusions 

The time trials on the NIU system and xCat cluster showed that there are speedups to be 

found when implementing communication hiding. However, the speedups found in the sample 

systems were minimal. Except for a couple of specific cases, the NIU system was limited to at most a 

1.10 speedup from communication hiding, while the xCat cluster never saw more than a 1.052 

speedup due to communication hiding in either the pipelined or distributed system. It is believed that 

this is due to lower communication times because of high-speed networking links. The low 

communication times limit the effectiveness of communication hiding. 



www.manaraa.com

36 

5. Summary 

This thesis introduced the ALGA system, which is an image processing system that analyzes 

radar images and predicts where the runway is located in a radar image and if obstacles are in the 

runway. It is designed for aircraft attempting to land in low visibility. 

Because of high computation requirements, various methods of speeding up the ALGA 

algorithms were analyzed. The first methods analyzed consisted of speeding up the software of the 

system. The Hough transform was used in the system to find the edges of the runway, and it was 

very inefficient in the beginning. To speed up the Hough transform, a switch was made to the 

Duda/Hart version of the algorithm, and speedups were found ranging from 4.51 to 4.96. Next, the 

algorithm was converted to all-integer arithmetic through an arithmetic code, which resulted in 

further speedups from 1.56 to 1.82. Using binary shifts instead of division in the calculations 

optimized the arithmetic code, and speedups from 1.41 to 1.48 were found. The last optimization 

consisted of increasing the incremental value of the angle in the DudalHart algorithm, which resulted 

in large speedups. In fact, scaling the incremental value by N resulted in a speedup larger than N due 

to more efficient caching. 

Because the entire system would still be too slow to meet minimum quality of service 

requirements, the algorithms were moved to a distributed system to increase throughput. A pipelined 

implementation of the algorithms was introduced with each stage of the pipeline assigned a subset of 

the ALGA algorithms. This system was tested on the fibre-channel-based NIU system and a larger 

cluster of workstations. Both systems found significant speedups due to pipelining. The speedup in 

the NIU system ranged from 1.48 to 1.61, while the cluster maintained an efficiency between 0.80 

and 0.85 even as the number of pipeline stages increased to eight. We can conclude that the pipelined 

system is a very good way to parallelize algorithms in a system with linear data flow. 

The last part of the thesis looked to optimize communication in the distributed system via 

communication hiding. Two systems, the pipelined system and a theoretical producer-multiple-



www.manaraa.com

37 

consumer system, were tested for speedups gained by communication hiding. In all examples, 

communication hiding never resulted in large speedups for either test system. The xCat cluster had 

especially disappointing results, with the speedup never being larger than 1.052 for any case. It was 

concluded that the high-speed communication networks result in very low communication times, even 

without communication hiding. Because of this, any speedups from communication hiding are going 

to be limited. 



www.manaraa.com

38 

References 

[ 1 ] Kaliyaperumal, K.; Lakshmanan, S.; Kluge, K. An Algorithm for Detecting Roads and Obstacles 

in Radar Images. IEEE Transactions on Vehicular Technology. Vol. 50, Issue 1. January, 2001. Pp. 

170-182. 

[2] Ito, M.R.; Duong, S.; McFee, J.E.; Russell, K.L. Towards Real-Time Detection of Landmines in 

FLIR Imagery. Proceedings of the 1 lth IEEE Signal Workshop on Statistical Signal Processing, 2001. 

Pp. 154-157. 

[3] Hellwich, O.; Gunzl, M. Landuse Classification by Fusion of Optical and Multitemporal SAR 

Imagery. Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. 

IGARSS 2000. Vol. 6. Pp. 2435-2437. 

[4] Katartzis, A.; Sahli, H.; Pizurica, V.; Cornelis, J. A Model-Based Approach to the Automatic 

Extraction of Linear Features from Airborne Images. IEEE Transactions on Geoscience and Remote 

Sensing. Vol. 39, Issue 9. September, 2001. Pp. 2073-2079. 

[5] Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654. 

December 18, 1962. 

[6] Leavers, V.F. Shape Detection in Computer Vision Using the Hough Transform. Springer-Verlag 

London Limited. 1992. 

[7] Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. 

Communications of the ACM, Vol. 15, No. 1. January, 1972. 

[8] Olmo, G.; Magli, E. All-Integer Hough Transform: Performance Evaluation. Proceedings of the 

2001 International Conference on Image Processing. Vol. 2. Pp. 338-341. 

[9] Zhang, M. On the Discretization of Parameter Domain in Hough Transformation. Proceedings of 

the 13th International Conference on Pattern Recognition, 1996. Vol. 2. Pp. 527-531. 

[ 10] Osterhaug, A. Guide to Parallel Programming on Sequent Computer Systems. Sequent 

Computer Systems, Inc., 1987. 



www.manaraa.com

39 

[ 11 ] King, C.T.; Chou, W.H.; Ni, L.M. Pipelined Data-Parallel Algorithms: Part I —Concept and 

Modeling. IEEE Transactions on Parallel and Distributed Systems. Vol. 1, Issue 4. October, 1990. 

Pp. 470-485. 

[12] Chong, M.N.; Soraghan, J.J.; Durrani, T.S. Pipeline Functional Algorithms, Data Partitioning 

for Adaptive Transform Coding Algorithms. IEEE Colloquium on Parallel Architectures for Image 

Processing Applications, 1991. Pp. 8/1-8/6. 

[ 13] Chatterjee, S.; Strosnider, J. Distributed Pipeline Scheduling: End-to-End Analysis of 

Heterogeneous, Multi-Resource Real-Time Systems. Proceedings of the 15th International Conference 

on Distributed Computing Systems, 1995. Pp. 204-21 1. 

[ 14] The MPI Standard. URL: http://www.mcs.anl.gov/mpi. Date of access: July 9, 2002. 

[ 15] Turner, D.; Weiyi, C.; Kendall, R. Performance of the MP_Lite Message passing Library on 

Linux Clusters. The Second International Conference on Linux Clusters: The HPC Revolution. 2001. 

URL: http://cmp.ameslab.gov/clasp/Papers/ddt uiuc MP Lite.pdf. Date of access: July 9, 2002. 

[ 16] Extreme Cluster Administration Toolkit. URL: http://www.x-cat.org. Date of access: July 9, 

2002. 

[ 17] Somani, A.K.; Sansano, A.M. Achieving Robustness and Minimizing Overhead in Parallel 

Algorithms Through Overlapped Communication/Computation. The Journal of Supercomputing. Vol 

16, No. 1-2. May, 2000. Pp. 27-52. 

[ 18] Fahringer, T.; Mehofer, E. Buffer-Safe Communication Optimization based on Data Flow 

Analysis and Performance Prediction. Proceedings of the 1997 International Conference on Parallel 

Architectures and Compilation Techniques. Pp. 189-200. 

[ 19] Li, X.; Harada, K. An Efficient Asynchronous Data Transmission Mechanism for Data Parallel 

Languages. Proceedings of the 1996 International Conference on Parallel and Distributed Systems. 

Pp. 238-245. 

[20] Sohn, A.; Ku, J.; Kodama, Y.; Sato, M.; Sakane, H.; Yamana, H.; Sakai, S.; Yamaguchi, Y. 

Identifying the Capability of Overlapping Computation with Communication. Proceedings of the 

1996 Conference on Parallel Architectures and Compilation Techniques. Pp. 133-138. 



www.manaraa.com

40 

[21 ] Kodama, Y.; Sakane, H.; Sato, M.; Yamana, H.; Sakai, S.; Yamaguchi, Y. The EM-X Parallel 

Computer: Architecture and Basic Performance. Proceedings of the ACM 22°d International 

Symposium on Computer Architecture. Pp 14-23. 1995. 

[22] Agerwala, T.; Martin, J.L.; Mirza, J.H.; Sadler, D.C.; Dias, D.M.; Snir, M. SP-2 System 

Architecture. IBM Systems Journal Vol. 34, No. 2, 1995. 

[23] Krikelis, A. High-Performance Multimedia Applications and the Internet. IEEE Concurrency, 

Vol. 6, Iss. 3, 1998. pp. 17-19. 



www.manaraa.com

41 

Acknowledgements 

First and foremost I would like to thank my major professor, Arun Somani. His help and 

guidance throughout my career at Iowa State, both as an undergraduate research assistant and later as 

a graduate student, have allowed me to take the next step in my educational and professional career. I 

especially appreciated his always-open door policy and his willingness to set aside anything he's 

doing to help me solve a problem. 

A great deal of gratitude must go to the Research and Development group at Lockheed 

Martin in Eagan, Minnesota for their generous loan of test equipment used to write this thesis. 

Specifically, the logistical and technical support of John Esch and Rick Stevens made this thesis 

possible. 

Finally, I need to say thanks to Jenny Hively, who has put up with more than anyone should 

be expected to during my stint as a graduate student. Between the long drives and the large phone 

bills, she has always provided me with the support I needed to make it through this process. 


	Optimization of image processing algorithms via communication hiding in distributed processing systems
	Recommended Citation

	Optimization of image processing algorithms via communication hiding in distributed processing systems

